
Cable Solutions 7x2 Automatic Digital Audio Switcher
Item#: DAS-001

Specs/Features:

• Optical/SPDIF Audio Switch with automatic input detection

• 4 optical inputs and 3 SPDIF inputs (RCA plugs)

• Optical and/or SPDIF (RCA) outputs

• Optical output will switch off if there is no signal on any input (so a receiver can switch on/off
automatically based on the signal here)

• 2 color status LED for every input

• Manual override input selection button

• High quality Wolfson audio processor with 7 inputs to de-jitter and refine the signal (not just a
simple digital switch!)

• Full support up to 192kHz/24Bit audio

• Power supply via Mini USB cable (can be connected to a TV USB port for example, so it
switches on and off with the TV)

• Possibility to make software updates via USB on a computer (in case there might be updates)

Automatic Input Detection / Switching Logic
Basically, all inputs have priorities (OPT1 has highest priority, RCA1 second priority, OPT2 third ...). If a
signal comes up on an input with higher priority the switch will jump to this input immediately. If there are
active signals on multiple inputs, the switch will stay on the current input as long as there is a valid signal
- if the signal is invalid for some seconds, it will check the next active input if the signal there is valid - if
the signal there is also not valid it will go on to the next and so on.

Automatic Switching
Mainly the switcher looks for the presence of any signal (for optical this means if there is light in the cable
or not). In most cases, if there are multiple active sources on the inputs, the left input always has priority
over the right input.

The switcher also has the ability to analyze the signal on the current active input, however, and checks if
there is no audio (all bits in the S/PDIF packet zero) or if the packets are marked as invalid (Windows
computers typically transmit invalid packets when there is no audio). If there is no valid audio for some
seconds (10 seconds per default – may be changed via software) and there is a signal on a lower
prioritized input, the switch will mark the current active input as invalid and fall back to the next lower
prioritized input. In this case it will stay on the lower prioritized input as long as the signal is lost on this
lower prioritized input or until a signal on a higher prioritized input pops up (also when the signal on the
input which is marked as invalid is lost and pops up again).

It is also possible to disable the zero and inactive packets detection via software to treat the signal always
as valid signal, also when zero or invalid packets are transmitted for some time. The exact behavior
depends upon the connected devices, on how your devices behave, so please take time to read the use
case examples to understand the behavior of the switcher. Many devices also have a “keep-alive” option
that can be switched on or off – to work well with the switcher it is always good to disable the “keep-alive”
option, so that the signal is fully stopped when there is no audio.

Typical Use Case Examples

Use Case with RaspberryPi, PlayStation and TV

Input 1: Raspberry Pi (switches the S/PDIF signal off when there is no audio)
Input 2: PlayStation (switches the S/PDIF signal off when switched off)
Input 4: TV (always transmits a valid audio signal when switched on)

As the TV always transmits a valid signal, it will always switch to the TV when the other two devices are
off (a device that always transmits a valid signal only works correctly when plugged into lowest priority).

When the PlayStation is on the switch will switch to it and fall back to the TV when it is off again.

When the Raspberry Pi is on (no matter if the PlayStation is on) the switch will switch to it and fall back to
the PlayStation it is on or to the TV if the PlayStation is off. page 3/7

Use Case with 2 Windows Computers

Input 1: Raspberry Pi (switches the S/PDIF signal off when there is no audio)
Input 3: Windows computer 1 (always transmits a signal, but invalid packets when no audio)
Input 4: Windows computer 2 (always transmits a signal, but invalid packets when no audio)

Let’s assume the Raspberry Pi is off, both computers transmit valid audio and computer 1 is currently the
active input.

The switch will stay on computer 1 as long as there is a valid signal.

If there is no valid signal for some seconds (10 seconds per default – may be changed via software) the
switch will mark the input as invalid and move on to computer 2 (it will not know when the signal of
computer 1 gets valid again).

It will then stay on computer 2 as long as there is a valid audio signal here.

When the signal of computer 2 also gets invalid, it will also mark this input as invalid and move on again
to computer 1.

It will wait again for some seconds for a valid signal and if there is no valid signal it will move on again to
computer 2.

If both computers stop playing audio the switch will toggle between the two inputs with the defined
timeout until there is again a valid signal on one of the inputs – it will then stay on this input as long as
there is a valid signal here or until a signal on a higher prioritized input pops up.

When the Raspberry Pi finally starts to transmit a signal, it will always override the two toggling computers
because of the higher priority and the switch will switch to it. When the Raspberry Pi stops transmitting
the switch will fall back again to the two toggling computers.

Use Case with a TV and a Windows Computer (this example that can be problematic)

Input 3: Windows computer (always transmits a signal, but invalid packets when no audio)
Input 4: TV (always transmits a valid audio signal when switched on)

When the TV is on and the computer is off, the switch will switch to the TV.

When the computer is on and transmits audio the switch will switch to the computer.
However, when the audio from the computer stops and the computer transmits invalid packets for some
seconds the switch will mark the input as invalid and fall back to the TV.

As the TV always transmits a valid signal it will always stay here and never go back to the computer (only
when the signal of the computer fully stops and pops up again – for example upon reboot).

The only thing that could be done here is to disable the zero and invalid packets detection. The switch will
then switch to the computer and always stay on the input of the computer as long as there is any signal
(no matter if valid or not) and only fall back to the TV again when the computer is fully switched off again.

Status LEDs
Each input of the switch has a 2-color status LED (red/green).
Current active input: solid
Inactive inputs: blinking
No signal available: red
Signal available: green
Signal available, but invalid or zero: orange (red+green)
solid red: current active input without signal
solid green: current active input with active signal
solid orange: current active input with signal that is invalid or zero
blinking red: inactive input without signal
blinking green: inactive input with signal available
blinking orange: inactive input where the last signal state was invalid or zero

Alternative LED Mode
The switcher also has an alternative LED mode that can be activated with a command over the virtual
COM port via USB (or of course with the “Config” button in the client tool).

 Current Active Input Inactive Input

No signal available blinking red LEDs off

Signal available solid red solid green

Signal available,

but invalid or zero blinking orange solid orange

USB Connection
When the switcher is plugged to a computer, it will register as a virtual COM port.

This is confirmed working on Windows and Linux. It should also on a Mac, although this is currently
untested.

A client tool is available for Windows (the client tool will ask for admin rights when it is started –
unfortunately this is needed to find the correct COM port automatically based on the USB VID/PID).

If Windows doesn’t recognize the switch automatically as COM port the download package also contains
a .inf driver file that can be selected as driver to point Windows to the correct internal driver to use (the
driver itself is part of Windows).

The switch will send status messages every 2 seconds that show the status of the current active input (it
is not possible for the audio processor to monitor another input at the same time).

UNLOCK: The S/PDIF receiver cannot lock onto the data stream
INVALID: Received packets are marked as INVALID (no audio)
ZERO: All bits in the received packets are ZERO (no audio)

Commands
It is possible to control some functions or change some settings of the switch by sending commands to it.

All commands start with a ‘$’ and end with a CR or LF (‘\r’ or ‘\n’).

Command

Description

$FWV\r\n Check the current firmware version and configuration

$FWU\r\n Start firmware update mode (Atmel bootloader)

$CLA0\r\n Disable LEDs on current active input (solid LED)

$CLA1\r\n Enable LEDs on current active input (solid LED)

$CLI0\r\n Disable LEDs on inactive inputs (blinking LEDs)

$CLI1\r\n Enable LEDs on inactive inputs (blinking LEDs)

$CLR0\r\n Disable LEDs on inactive inputs without signal (only blinking red LEDs)

$CLR1\r\n Enable LEDs on inactive inputs without signal (only blinking red LEDs)

$CLM0\r\n Enable Alternative LED Mode

$CLM1\r\n Disable Alternative LED Mode

$CI0\r\n Disable invalid packets detection (“I” = big “i” and not a small “L”)

$CI1\r\n Enable invalid packets detection (“I” = big “i” and not a small “L”)

$CZ0\r\n Disable zero packets detection

$CZ1\r\n Enable zero packets detection

$CT*\r\n Configure timeout to fall back to a lower prioritized input when invalid or zero
packets are received.

The byte “*” will be interpreted as number between 51 and 250 which results in
a timeout between 1 and 200.
For example when “*” is “A” ($CTA\r\n) the number (ASCII) is 66, so the timeout
that will be set is 16 seconds.

$I*\r\n Switch to a specific input (“I” = big “i” and not a small “L”)
“*” is the number of the input as character.
For example when “*” is “2” ($I2\r\n) the switch will switch to input 2.
The input numbers are an internal numbering scheme of the switch.
For a 4 input switch the inputs are 1-2-3-4
For a 7 input switch the inputs are 1-5-2-6-3-7-4 (when looking onto the switch
from the front)

Firmware Update
To avoid unnecessary problems a firmware update is recommended only if you need a special feature of
a newer firmware.

Install Atmel Flip
To update the firmware of the switch “Atmel Flip” must be installed (requires also Java).
It is highly recommended to restart the computer after installing “Atmel Flip” (otherwise there are often
issues with Java).
This should be done before putting the switch into firmware update mode (otherwise the driver for the
bootloader will not be installed automatically).

Bring switch into update mode
Start the client tool and connect to the switch (upper left corner of the client tool).
(The client tool will ask for admin rights when it is started – unfortunately this is needed to find the correct
COM port automatically based on the USB VID/PID).
Click “Start FW Update Mode” (upper right corner of the client tool).
The switch will disconnect from the Client tool and start in a special firmware update mode.

Run firmware update
Click “Update FW” in the client tool (upper right corner of the client tool).
(COM port of the switch is not available at this time and the client tool can’t connect!)
Select the firmware file - a console window will pop up and run the update.
When the update is finished, the switch will restart normally.
Sometimes the switch is not recognized after this restart – in this case just unplug it from the computer
and plug it in again and the COM port should be available again.

Download Package
The firmware update package contains the following files:

 Installer for Atmel Flip

 .inf Driver File

 Client tool

 Newest firmware file

(contact Cable Solutions to obtain the current files)

